Home

raccogliere grandinare fetta clip 170 multiplo scintilla piramide

Overexpression of the microtubule-binding protein CLIP-170 induces a +TIP  network superstructure consistent with a biomolecular condensate | bioRxiv
Overexpression of the microtubule-binding protein CLIP-170 induces a +TIP network superstructure consistent with a biomolecular condensate | bioRxiv

Overexpression of the microtubule-binding protein CLIP-170 induces a +TIP  network superstructure consistent with a biomolecular condensate | bioRxiv
Overexpression of the microtubule-binding protein CLIP-170 induces a +TIP network superstructure consistent with a biomolecular condensate | bioRxiv

Stress-induced phosphorylation of CLIP-170 by JNK promotes microtubule  rescue | Journal of Cell Biology | Rockefeller University Press
Stress-induced phosphorylation of CLIP-170 by JNK promotes microtubule rescue | Journal of Cell Biology | Rockefeller University Press

Conformational changes in CLIP-170 regulate its binding to microtubules and  dynactin localization
Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization

Mapping multivalency in the CLIP-170–EB1 microtubule plus-end complex -  ScienceDirect
Mapping multivalency in the CLIP-170–EB1 microtubule plus-end complex - ScienceDirect

PS1 as an anchor of vesicles for CLIP-170. A) Diagrammatic... | Download  Scientific Diagram
PS1 as an anchor of vesicles for CLIP-170. A) Diagrammatic... | Download Scientific Diagram

Capturing protein tails by CAP-Gly domains. | Semantic Scholar
Capturing protein tails by CAP-Gly domains. | Semantic Scholar

Addgene: mEmerald-CLIP170-N-18
Addgene: mEmerald-CLIP170-N-18

Interactions between CLIP-170, Tubulin, and Microtubules: Implications for  the Mechanism of CLIP-170 Plus-End Tracking Behavior | Molecular Biology of  the Cell
Interactions between CLIP-170, Tubulin, and Microtubules: Implications for the Mechanism of CLIP-170 Plus-End Tracking Behavior | Molecular Biology of the Cell

Ninein is essential for apico-basal microtubule formation and CLIP-170  facilitates its redeployment to non-centrosomal microtubule organizing  centres | Open Biology
Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres | Open Biology

Overexpression of the microtubule-binding protein CLIP-170 induces a +TIP  network superstructure consistent with a biomolecular
Overexpression of the microtubule-binding protein CLIP-170 induces a +TIP network superstructure consistent with a biomolecular

Mapping multivalency in the CLIP-170–EB1 microtubule plus-end complex -  ScienceDirect
Mapping multivalency in the CLIP-170–EB1 microtubule plus-end complex - ScienceDirect

CLIP-170 and IQGAP1 Cooperatively Regulate Dendrite Morphology | Journal of  Neuroscience
CLIP-170 and IQGAP1 Cooperatively Regulate Dendrite Morphology | Journal of Neuroscience

Microtubule binding proteins CLIP-170, EB1, and p150Glued form distinct  plus-end complexes - ScienceDirect
Microtubule binding proteins CLIP-170, EB1, and p150Glued form distinct plus-end complexes - ScienceDirect

CLIP‐170 spatially modulates receptor tyrosine kinase recycling to  coordinate cell migration - Zaoui - 2019 - Traffic - Wiley Online Library
CLIP‐170 spatially modulates receptor tyrosine kinase recycling to coordinate cell migration - Zaoui - 2019 - Traffic - Wiley Online Library

Pregnenolone activates CLIP-170 to promote microtubule growth and cell  migration | Nature Chemical Biology
Pregnenolone activates CLIP-170 to promote microtubule growth and cell migration | Nature Chemical Biology

Dynactin 1 negatively regulates HIV-1 infection by sequestering the host  cofactor CLIP170 | PNAS
Dynactin 1 negatively regulates HIV-1 infection by sequestering the host cofactor CLIP170 | PNAS

CLIP-170S is a microtubule +TIP variant that confers resistance to taxanes  by impairing drug-target engagement - ScienceDirect
CLIP-170S is a microtubule +TIP variant that confers resistance to taxanes by impairing drug-target engagement - ScienceDirect

AMPK controls the speed of microtubule polymerization and directional cell  migration through CLIP-170 phosphorylation | Nature Cell Biology
AMPK controls the speed of microtubule polymerization and directional cell migration through CLIP-170 phosphorylation | Nature Cell Biology

CLIP-170S is a microtubule +TIP variant that confers resistance  to taxanes by impairing drug-target engageme
CLIP-170S is a microtubule +TIP variant that confers resistance to taxanes by impairing drug-target engageme

α-Tubulin Tyrosination and CLIP-170 Phosphorylation Regulate the Initiation  of Dynein-Driven Transport in Neurons - ScienceDirect
α-Tubulin Tyrosination and CLIP-170 Phosphorylation Regulate the Initiation of Dynein-Driven Transport in Neurons - ScienceDirect

CLIP-170 and IQGAP1 Cooperatively Regulate Dendrite Morphology | Journal of  Neuroscience
CLIP-170 and IQGAP1 Cooperatively Regulate Dendrite Morphology | Journal of Neuroscience

Regulation and function of CLIP-170/CLASP2-dependent microtubule... |  Download Scientific Diagram
Regulation and function of CLIP-170/CLASP2-dependent microtubule... | Download Scientific Diagram

CLIP-170S is a microtubule +TIP variant that confers resistance to taxanes  by impairing drug-target engagement - ScienceDirect
CLIP-170S is a microtubule +TIP variant that confers resistance to taxanes by impairing drug-target engagement - ScienceDirect